Brief Bio: Howard Aiken
Welcome to the latest installment of the Brief Bio series, where I'm writing up very informal biographies about major figures in the history of computers. Please take a look at the Brief Bio archive, and feel free to leave corrections and omissions in the comments.
My intention was to create these brief bio posts in chronological order (by each person's birthday). I knew that would never really work, because I was bound to discover some other important figures not on my initial attempt at a list, as is the case this time. While writing about Grace Hopper, I discovered that Howard Aiken is worth writing about too.
Howard Aiken
Howard Aiken was born in 1900 in Hoboken, New Jersey. His father was Daniel H. Aiken, who came from a wealthy Indiana family. The Aiken family moved back to Indiana, where Howard was raised as an only child. Daniel Aiken was an abusive alcoholic, and by the age of 12, Howard drove his father out of the house with a fire poker, and he was never seen again. When Howard reached the 9th grade, he left school to install telephones to help support his mother. One of his teachers, recognizing his math skills, arranged for him to get a night job (as an electrician's helper), so he could still attend school.
Eventually, Aiken would find his way to Harvard, where he got a Ph.D. in physics. While working on his doctoral thesis, he got the idea of creating a computer. His thesis involved solving lots of differential equations, which he found excessively time consuming. He proposed an Automatic Calculating Machine [PDF] to pitch to IBM. In this document he lays out an interesting history of automatic calculation, and references Charles Babbage. A quote from Aiken seems to be channeling the spirit of Babbage:
"The desire to economize time and mental effort in arithmetical computations, and to eliminate human liability to error is probably as old as the science of arithmetic itself."
Eventually, IBM agreed to fund the proposal, and Aiken started working on the ASCC (later called Mark I) in 1939. It was moved to Harvard in March 1944. (Grace Hopper joined the team at Harvard in July 1944).
In August 1944, John von Neumann went to Harvard to run some imploding simulations used for research in creating the first atomic bomb. It's quite breathtaking to think about this event: two tremendous forefathers of the world of computing, collaborating with huge, imposing machines to try and effect one of the most important global conflicts of all time. As I explore more of the figures of computational crossroads like Los Alamos, Bletchley Park, and Palo Alto, I'm sure this will be a continuing and compelling theme.
The Harvard architecture was born out of the Mark I. It stands in constrast to the Von Neumann Architecture, in that the program is stored separately from the memory. The Harvard architecture was born out of technical constraints, but it lives on in the Modified Harvard architecture. These architectural concepts are still with us today in operating systems, virtual machines, and programming languages.
During World War 2, the Mark I was starting to get a sizeable backlog, so the Navy commissioned a second machine from Aiken, the Mark II, which also used the Harvard architecture.
The next computers from Aiken, the Mark III (which was actually featured on the cover of Time magazine in 1950) and Mark IV were built with solid-state components instead of relays.
Aiken retired in 1961, and was already starting to become an elder statesman of computing. He moved to Florida after retiring and married his third wife in 1963. He served as a consultant to Lockheed and Monsanto. One of the last things Howard Aiken did before his death in 1973 was to get a patent on cryptography (patent #3,657,476). However, for all the pioneering work that Aiken did, he never seemed to be much for patents. One last quote from Aiken:
"Don't worry about people stealing your ideas. If your ideas are any good, you'll have to ram them down people's throats."
For more on Aiken, check out Howard Aiken: Portrait of a Computer Pioneer, which seems to be available for free on Google Books.